人生论

首页 » 常识 » 诊断 » 杨立岩人大演讲怎样写出好论文
TUhjnbcbe - 2022/10/13 10:05:00

杨立岩:加拿大多伦多大学终身正教授,PeterL.Mitchelson/SIT投资基金会讲席教授;中国人民大学金融创新中心(筹)。主要研究方向是金融市场和行为金融。

今天就讲一讲自己的经历,讲一讲作为一个过来人的经验教训,讲一讲如何学习和找教职的经验。

01个人经历

我高中是理科生,对物理、化学、数学比较感兴趣,但父亲觉得财*税收专业之后可以进财*局、税务局等体面的单位,当时啥也不懂,就阴差阳错进入山东大学财*税收系读本科。

但是这种文科班老师上课的时候一般只给结论不涉及推导与计算,而自己对背诵性的内容不太擅长,所以还采用理科生的学习方式,自己推导。期末考试前突击背笔记,也能考得还可以。

当时心里就明白这个专业对我来讲并不那么合适。经济学的数学很简单,有吃不饱的感觉。幸亏当时保留了对理科的热爱,选听了管理学院和数学系的课。直到硕士期间,跟着老师(注:著名经济学家*少安老师)学习了产权、制度经济学。

老师在产权这一块很有见地,在山东省的产权改革领域做了很多工作。他做学问强调从实际出发,去了很多地方做调研,基础做得很扎实。(*)老师对我影响很大。

后来考上了清华大学去读博士,当时考试竞争很激烈,全国只有四个名额,要求四门课都要及格,然后再排名、面试。但当时四门课都及格的好像就俩人,我就是其中之一(注:另一位是对外经贸大学的潘慧峰老师),于是就这样去了清华。

但我在清华4年博士没读完,中途发生了一个转折。年的时候,有一批国外的特聘教授来清华,听了他们讲课感觉非常不一样,那种研究的范式非常符合我的理科风格,激发了自己的兴趣。

当时受到了洪永淼老师的帮助和启发出国深造,申请康奈尔大学经济学博士项目(据说有多人申请,录取二三十个人,所以没有老师推荐的话,中国人非常难申请上)。所以说一个好老师真的会带来人生的改变。

最初的时候想跟着洪老师做计量经济学,做了一段时间计量发现主要是在构造统计量,证明它们的收敛和统计属性,对我而言,这种研究有点太抽象,当然,它是非常重要和有意义的。

经济学博士第一年都是基础课,第二、三年专业课。这里我想说,课的基础一定打好,这是洪永淼老师对我的教导,至今受益匪浅,所以我也想把这个传承告诉我的学生们。这一点,我在后面会再展开说一下。最开始跟着导师发论文的时候会觉得比较枯燥,但在做每一步的时候扎扎实实做好,长期都会有回报的,功不唐捐就是这个意思。

二年级的时候师从康奈尔的经济学教授,DavidEasley做研究,但是当时还是总觉得经济学还是太抽象。在商学院旁听*明老师的行为金融的课之后感觉非常兴趣,觉得金融更加贴近现实。之后跟David说想做金融,*明老师也特别鼓励我往金融方面发展。

我的导师David建议做金融研究一定要学会金融学的思维方式,并且要把presentationskills提高。我想了想,就在*老师的建议下,把金融学所有的博士生的课以及很多MBA课都上了一遍,觉得比较有意思。做金融虽然发表难,但是我发现转到金融也有好处,金融系博士人数少,几个人,找到工作相对容易,经济学一个系几十个人,比较庞大,找工作相对比较难。并且经济学比较抽象,金融就相对更直观,和现实更贴近。

博士毕业那年是金融危机后的第二年,JobMarket不是特别理想,最后我在多(伦多)大找了第一份工作。其实和大部分青椒一样,我前三年也过得很苦很失意,论文寄出去多数被拒,有一阵子每天去办公室都觉得压力很大。但是咬一咬牙,慢慢自己摸索前进,挺过黎明前最后的黑暗,就会感觉好很多了。年有几篇文章出来后,自己逐渐感到摸到点门路,信心也更足了,逐渐就进入了一个良性循环。

02读博期间的经验教训

接下来我讲一讲读博士期间的经验教训:

首先,工欲善其事,必先利其器,要掌握好基础知识与相关内容。很多东西不能通过上课学到,发现问题和研究的能力要自己培养。每一门课都要认真对待,最基本的东西其实不会变。这就是洪永淼老师教导的打好基础的思想。经济学的训练并不是简简单单的知识点的叠加,更多的是一种思维方式的训练。你要做的是将知识点吃透,体系化。

比如说,金融学最基本的一个概念是“多元化分散风险”,这个基本思想在很多领域都可以用到,包括最近很火的金融科技领域。之前在清华五道口听了一篇区块链文章,谈到“一起挖矿”就是可以通过多元化降低风险,这就对应着“不要把鸡蛋放到同一个篮子里”这个经典的金融学命题。

第二,增加研究体感,发掘研究题目。对我来说,参加seminar(学术讲座)是很重要的途径。一开始其实听不懂,但是可以观察,看资深老师如何提问题,如何回答问题,一般老师和大牛老师问出问题的质量差异在什么地方,回答问题的差距又在什么地方——这就象“熟读唐诗三百首,不会吟诗也会吟”一样,对研究的“重要性”的体感,研究的品位就慢慢上去了。

另外就是早点开始写第一篇论文。最开始写得肯定比较差,但是写的时候慢慢就会发觉自己对什么方向感兴趣,这样再去听讲座的时候就能有方向、有重点。对于博士生而言,可以大胆地把自己的想法和老师交流,不要羞怯。在条件允许的情况下,争取和老师合作,也可以和同学合作,有经验的合作者知道重点是什么,能提高发表的成功率。

比如当时读博士的时候,我根据经典的Grossman-Stigliz模型(信息不对称模型:如果信息好就买入,信息不好就卖出,有一部分人价格反映信息,还有一部分人没有信息)写了一篇关于微观市场结构的文章,当时被拒了。结果等毕业后,和一个同事聊天,在讨论的过程中产生一个想法,加入和现实的结合,最后文章在RFS成功发表。

第三,找准方向深挖,寻求合作机会。成长是个渐进的过程,在这个过程中慢慢定一个方向,一个目标去发展。定下来以后,要知道每个领域做什么,有哪些人做得好,多去听这些前辈讲、多去揣摩他们的作品、多和他们的paper对话,了解这个领域最前沿的东西,慢慢地把自己的想法融合进去。自己一个人的力量是有限的,多和同学或者老师合作。

一方面和自己的同学或者同一代的学者合作,大家合作可以取长补短,思想碰撞。另一方面,要多和有经验的老师交流,有经验的老师能够帮助年轻人提高很多。现在中国的会议也很多,如果有自己做的很好的东西都可以和他们聊——记住,要聊你真懂的东西。

行家一伸手,就知有没有,你是否在一个领域下了功夫senior很快能分辨出来。找senior合作是一条捷径,最初写的东西和写作业题一样,senior的东西写得更加精炼,一看就能看出差距。在和senior合作的过程中,勤奋+谦逊,永远是最好的态度。

03科研要怎么做?

这个问题一千个老师有一千个答案,每个人生存之道不同,也会给出不一样的说法。

从我个人经验出发,我认为写文章、做科研主要有两个方向:一个真正长远的,有意义的方向是从实际出发。金融学是问题导向——先发现问题,然后再想怎么解决。比如说,我年一篇RFS的文章就是这样出来的:

年华尔街日报有篇报道,高盛当时推出了一个热销的金融产品,但是这个产品实际状况非常垃圾,因为高盛的金字招牌,在市场上行销很久,后来这个事情被发现,相关人士被告。我看完报道后,想到,从我们普通投资者角度,很难知道大的对冲基金的内部头寸,所以天生具有很大的信息不对称——再延伸想,想到学过的一门课上讲过的DecisionTheory。

基于这个想法,我开始有意识的研究这个问题,构建了一个模型,通过模型证明,对冲基金本身体量并不大,但它们会影响市场的信息,导致最终市场影响比较大,这篇文章后来发到了RFS(ReviewofFinancialStudies)上。

我另外一篇论文是关于高频交易的(highfrequencytrading,HFT),论文名字叫back-running。这个概念对应着金融学里常见的front-running。文章的这个题目其实是马里兰大学的PeteKyle教授建议的。

当时我受邀去马里兰大学做报告,和Pete一起吃晚餐,当我和Pete描述了论文后,我们感到back-running这个题目非常形象的抓住了论文的核心。当时写这篇论文的初衷是这样的:在-年度的学术会议上,学界对HFT讨论的非常热烈;

但是很多讨论都是描述性的,缺乏一个严密的分析框架。我和我的合作者(MIT朱昊翔)就尝试着写了一个模型,去刻画HFT如何获取信息、如何交易,其他交易者如何应对,从而整个市场如何受到影响。后来有一些实证性的论文用数据验证了我们模型的预测和结论,都发表的很好(一篇在年JF,另一篇在年RFS)。

另一个方向,对于实际经验不足的学生来说,也可以从文献出发。比如说在读文献过程中,若感到methodology上不怎么自洽,就可以此为突破口写论文。

我有两篇文章都是这样出来的:一个是Jobmarketpaper,当时选了*明老师的行为金融,课上讲了前景理论,*老师围绕着前景理论讲了很多它的应用。特别的,*老师提到这个理论能够解释金融学里好多常见的puzzle/anomaly。

例如,根据前景理论,人们特别怕亏损,挣钱增加一个单位效用亏钱减少两个单位的效用,这样就能够产生一个比较大的股票回报溢价(equityyield);另外,根据前景理论,人一旦挣了钱就是风险厌恶,亏了钱就是风险偏好,这样可以解释处置效应(dispositioneffect),即人们总是更想卖赚了钱的股票;

这个处置效应可以进一步产生一个股价现象叫做动量(momentum),即去年赚钱的股票今年还赚钱,去年亏钱今年接着亏钱,从而学界认为前景理论能够解释股价动量。

但是,在文献中,这些解释都是单独来研究的,一旦把所有东西放在一起,逻辑上就不一定自洽。例如,如果前景理论导致动量,那么你就知道一个股票如果今年赚钱明年还会接着赚钱,那你一定就不会想卖这种股票啊,所以就很难有处置效应。

也就是说,前景理论可能很难同时解释股价动量和处置效应。这样大的不自洽是不合理的。

*明老师当时就提到,在研究前景理论的时候,我们应该把这些很重要的puzzle放到同一个模型里来考量,从而看清楚前景理论到底能够解释哪些东西。就这样,在*老师指导下我针对此问题写了一篇论文作为Jobmarketpaper(自认为最好的),用它后来找到了工作。这篇文章后来在年发表在JFE上。

在这篇论文里,我假设所有人的行为都受前景理论的影响。之后,很多人问我如果假设其中一部分人不受到前景理论的影响,即是所谓的“正常理性”的arbitrageur,结果会不会有所改变。

这个问题其实是文献上经典的“异质性和市场选择”问题(heterogeityandmarketselection),我导师DavidEasley在这个领域做过开创性贡献。我和David讨论了一下,知道相关文献中没有人做过这个题目。所以,我们就在我jobmarketpaper中引入arbitrageur来探索arbitrageur和前景理论的互动。这篇文章在年发到JET(JournalofEconomicTheory)上。

这两篇文章有一个共同特点,就是文献告诉我们需要写一个严格的理论模型,这个模型就像物理学的实验室一样,研究者可以使用这个模型来考察前景理论能否同时解释多个金融现象,以及这种解释在多大程度受到异质性的影响。

这两篇文章的写作思路都是从文献出发的。所以,读通文献也是一条科研的路径,这一点我跟很多同行交流都有同感。

所以我眼里,做学问,找想法一般就是这两条路:从问题出发和从文献出发,从文献出发可能对某些学生更简单,但要记住,真正的大学问一定是问题导向的,从问题出发是最终的康庄大道。

04怎么写出“好论文”

好论文是发顶尖期刊的起码标准。什么叫做好的论文呢?有时面临选题抉择,每个人经历不一样,自己慢慢做才会真正懂。

我个人觉得有条原则:能让别人读了后学到东西是判断论文好坏最核心的标准。如果读前和读后,读者感到没有区别,那么读者包括审稿人就会感到不耐烦。那么什么叫可以学到东西?学生们有时候文献积累少看啥都觉得能学到东西,相反,老师们、尤其是资深学者研究经验比较丰富,知道文章和经典论文以及最前沿论文做的是什么,这就对论文提出了更高要求,所以“多读文献”是必不可少的,读得越多,越知道自己的局限。

比如我在这条路上走了这么多年,发了一些论文,也审阅过很多论文,天天读论文——但即使在自己领域,也还是很难说自己知道很多。我自己也曾遇到辛辛苦苦作的东西和别人的作品非常相似,投稿时文章被拒。

这种情况很难避免,也不必沮丧,勤奋多读就是正道。大家记得研究用英语写出来叫做research,其中词根re表示反复的意思,search表示探索,所以,research就是不断的探索,保持勤奋和创造性。

回到刚才的话题,说点细节的:具体来讲什么样的文章才算好文章呢?我主要是做理论的,所以我讲的主要是针对理论方面尤其是应用理论方面的文章。这个话题很多的学者讨论过,还有一些期刊网页上会有些相关的东西作为审稿人的指导。具体操作起来,不同的学者可能有不同的思路。在我看来,下面这几条可能是必要的:

1、理论要简洁(parsimonious),但同时要和现实结合紧密,能够解释很多金融现象(rich)。模型尽量简化,只包含真正想要描述的东西来表达清楚主要的想法,即所谓的parsimonious。写的东西尽量给读者一个清楚的信息,这样容易记住。同时,这个信息要能够用来解释很多现象,帮助读者理解现实世界,不能只是用来自娱自乐的。也就是说,理论抽象于现实,但是同时服务于现实。

2、好文章是既要surprising(惊奇),还要intuitive(直觉)。这两个词在英语上看似矛盾,但是细思之后就觉得很有道理,具体而言就是:如果文章不够surprising,道理用几句话能说清,还就不需要模型了。Intuitive意味着假设要贴近现实,对文章主要结论的解释要直观合理。所以,具体来说,要“exantesurprisingbutexpostintuitive”,即刚看到文章结论的时候读者要感到结论有新意,以前没想到过(他要学到新东西),但读完文章之后觉得文章的结论是合理的,想想还真是那么回事。

3、文章要unique(独特)和robust(稳健)。听上去也是比较矛盾,unique指的是文章中提到的主要结果或者机制在以前的模型没有做过,新瓶装旧酒一般比较难发好的杂志。Robust就是文章的主要结论不依赖于某个特定的模型假设。

用我以前发在ManagementScience上的文章做个例子吧。文章是关于社交网络的(socialnetwork)。大致研究背景是,年之后很多金融实证方面的文章发现社交网络对金融投资很有影响,之后有两三篇理论文章出来,主要结论是社交网络有助于人们分享信息,所以市场有效性会提高。简单来说,就是每个人都一个社交圈子,圈子越大,有信息的朋友越多,所以去和朋友喝酒的时候有可能从朋友那里免费获得信息。

可是,这些研究忽略了一个问题:要是人人都去喝酒获取信息了,就没人去调研考察获取信息了,对社会来说不是好事,那么到底是正作用还是副作用占主导?

于是我就写论文发现:长期来看这种信息交换的副作用比较多,原来的模型没考虑生产信息这一部分,考虑了就发现副作用了,这是个新的结果;同时在编辑和审稿人的要求下我试了四五个假设保证新结果的robust。

本文来自杨立岩教授在人大的演讲,不代表百度学术观点,如有侵权请联系原出处,无条件欢迎分享转发

1
查看完整版本: 杨立岩人大演讲怎样写出好论文